
The Caia Project

The Caia Project is the result of the need to have software to play competitions between 
programmed client players of strategic games1 from their own homes. That software is 
now available under a UNIX2 environment.

Introduction
The Dutch Olympiad in Informatics (NIO) has organized competitions between client 
player programs since 1996. In the beginning a match was played by starting a client 
player (player) program each time a move was needed. The history of the match was put 
in a text file that was updated by the jury software with the opponent’s last move to get 
the next one. When the organization of the NIO introduced the CodeCup3 in 2002, it also 
introduced a new protocol to play games. In the new situation both players have to be 
started only once. By using the stdin and stdout4, the jury software reads a move from 
one player using its stdout and prints it to the other player, using its stdin, after having 
done the necessary checks. The new method of playing games has made it more difficult 
for the programmers to organize competitions at home. Under Windows5 it is practically 
impossible to do this faultlessly; under UNIX it is fairly difficult but to be done.

Description of the project
Jaap Taal and Marcel Vlastuin developed a home edition of the jury software and 
published it as open source. The project Caia6 consists of several components:

• The program caiaio, which is written in the language C. This is the main program 
that takes care of the input and output and is ready-to-use. Caiaio stands for: Caia-
input-output.

• Programs that have to be written by the user are: a manager, a referee and, of 
course, the players themselves. The referee and the players are game dependent; 
the manager is not. The programs can be written in any language, the project has 
been tested for C, Pascal and Java players.

• The protocol that explains how the referee, the manager and the players can 
communicate with the caiaio and the others.

• An example of how to play a game between four Rolit players.
• An example of how to play a game between two Lamistra players.

The content of this project can be downloaded from the CodeCup website.

1 Strategic games like Chess, Checkers, Othello and Rolit. Rolit is played by four players.

2 Including Cygwin (see www.cygwin.com).

3 See www.codecup.nl.

4 The names stdin and stdout refer to virtual files from which a program can read and write. Under normal conditions it can read 
from the stdin using the keyboard of the computer and write to the stdout by printing text to the screen of the monitor.

5 Reasonable successes can be achieved if Cygwin is used.

6 Caia is actually the third project. It started with Atlas and Bubbles. With Bubbles, competitions were played with the CodeCup 
game Luckywords. The letters aia in Caia are the vowels from the CodeCup game Lamistra.

http://www.cygwin.com
http://www.cygwin.com
http://www.codecup.nl
http://www.codecup.nl


Overview of Caia

The manager7

To get things working the user must start the program caiaio. The first thing caiaio will do 
is execute the manager. In general, the manager takes care of games that must be played 
between different players in order to find out which is the best one: i.e. it runs a 
competition. The manager must be written and compiled by the user.

The caiaio is made in such a way that the players can identify themselves. If a player is 
started by the manager, caiaio waits for the first output that is sent by the player using its 
stderr. That output, called firsterror, is sent to the manager. In this way a player can 
inform the manager who and what sort of client player it is. If the manager is playing a 
competition between different players it can make use of a database. Games that have 
been played before, according to the database, can be omitted. However, if a player is 
producing random moves in some way, the game must be replayed. It is possible to play 
more games if one of the players is a random player so that the average result can be 
stored. The firsterror can be denied and is not compulsory. The players in use are fully 
compatible for both the CodeCup competition as well as for Caia competitions.

If the manager decides that a game must be played, the referee is launched in order to 
have it played. As explained, the players have already been started by the manager. After 
the game, the players are stopped independently and the referee’s report must be sent to 
the manager. The referee must stop itself.

The user can provide the manager with information about how to do things by using a 
text file, the name of which can be included as an argument from the command line.

The referee
If the referee is started, it communicates primarily with the players and sometimes also 
with the caiaio. Like the manager, the referee must be written and compiled by the user. It 
is up to the user to make a simple version of a referee or not. Nevertheless it is wise to 

7 In the last distributions a far more advanced manager is available. You can use competition to run competitions very easily. How 
this can be used is described in the document that comes with the distro of that game.



include a checker for the moves generated by the players. The checker should be made 
independent of the players for debugging purposes.
What they should be sent depends on the protocol being used for the players. Most likely, 
for the white player, the following will be sent: “1 Start”. Its answer is sent back and then, 
most likely, the referee will send “2 d4-d5” for the black player. The caiaio omits the first 
part of the messages and will send “Start” to player 1 and “d4-d5” to player 2.

If something goes wrong with a player, the referee will be informed by the caiaio. Instead 
of an answer from the player concerned one of the following four messages will be sent to 
the referee:

• <caiaio:_player_stopped>
• <caiaio:_player_crashed_%s> (%s is replaced by the type of crash)
• <caiaio:_player_timeout>
• <caiaio:_player_sends_”\n”>.

When a game is over, the referee can ask the caiaio to send the “playing time used” of 
both players. With that the referee can make up a complete report for the manager.

The players
The players must be written using the protocol for them. It is possible to make use of the 
firsterror to identify a player. In that case the player should send – unasked – an ID to its 
stderr. Don’t forget to flush it, because the caiaio will only wait a limited amount of time 
for the firsterror. The firsterror will be received 10 to 200 milliseconds after executing the 
player, depending on the size of the player, the hardware and operating system of the 
computer concerned. It is safest to use 1000 milliseconds to be sure the firsterror is seen.

The players can print information to their stderr. The caiaio scans that information and 
prints it to the screen (if it is in the debug mode) and to a log file (if wanted).



How to get and install the Caia project for a certain competition?
The Caia project can be used and achieved by getting the correct tarball from the 
CodeCup website (www.codecup.nl).

First you have to download the tarball caia_<distro>.tar.gz and put it in any directory.
For the CodeCup competition 2009 there are e.g. the following distros8 available:

• caia_pillars_linux.tar.gz
• caia_pillars_osx.tar.gz
• caia_pillars_cygwin.tar.gz

Then you must extract the source code of Caia and the binaries of the game concerning. 
Execute from the command line:

 tar –xzf caia_<distro>.tar.gz

How to compile the caiaio?
The source files in caia_install_<namegame>/caiaio/9 need to be compiled and linked. Then 
the executable and some other files must be copied. You can do that by executing from the 
command line:

 caia_install_<namegame>/install_game.sh <namegame>

In general there is only one game to install.

The scheme on the next page below shows the directory structure after being installed.

8 In general there is also a Windows version available. It is delivered with executables and doesn’t need to be compiled or installed. 
Also the directory structure is different. Some of the information in this document does not apply for this distro.

9 In the mentioned example <namegame> = pillars.

http://www.codecup.nl
http://www.codecup.nl


The game is installed in the home directory of the user and looks something like this:

caia/<namegame>/bin/
manager.txt
caiaio*
manager*
competition*
referee*
player1*
player2*
javawrapper*
jarwrapper*
<game dependent files>

caia/<namegame>/src/manager/
manager.cc
Makefile

caia/<namegame>/src/competition/
competition.cc
Makefile

caia/<namegame>/src/players/
<expect an extra stuff here>

caia/<namegame>/refereelogs/

caia/<namegame>/playerlogs/

caia/<namegame>/competitionlogs/

The items in cursive are folders; the items marked with an asterisk are executables. In the 
Cygwin distro they have an .exe suffix. The log files of the players, the referee and the 
competition manager10 will be put in playerlogs/, refereelogs/ and competitionlogs/.

The programs of the manager or other executables in the directories can be built using the 
command make from the makefile; an update of the executable is automatically put into 
the bin/ directory of that game.
The makefile from the players directory builds all C and Pascal client players in that 
directory and updates them into the bin/ directory of that game as well. The C and Pascal 
compilers need to be installed by the user himself.

The source files and the makefile of the caiaio are not copied.
You can find them left behind in the folder caia_install_<namegame>/caiaio/.

10 The competition manager will be discussed in the game documentation that comes with the distro.



How to start the caiaio for a game or a job?
The program caiaio must be started from the command line in the bin/ directory of a game:

 ./caiaio [-d] [-f <information>] [-m <executable>]

The three flags are optional:
-d Setting this flag causes the caiaio to print debug information to its stdout: the 

debug information will be printed to the screen. You might find this very useful 
because you can see what the caiaio actually is doing.

-f With this flag set, the string <information> will be passed as an argument when 
starting the manager by the caiaio. This option is included in the protocol in order 
to make it possible for you to provide information for the manager. The string can 
refer to an information file; that’s up to the user.

 Remind that you cannot use the stdin and stdout11 to communicate with your 
manager: the caiaio is doing that! It is possible though, to print information from 
the manager to the screen using its stderr12.

-m With this flag set, the executable with the name <executable> will be started by the 
caiaio as the manager. In this way it is possible to use different managers. By 
default the program manager will be started by the caiaio.

The protocol for the manager and the referee
It is preferred that when the referee communicates with a client player the referee is 
locked to the caiaio. The lock secures a good time measurement of the playing time of the 
client player. In some occasions the manager or the referee must not be locked. A locked 
program must always be unlocked after some time in order to enable the caiaio to read 
the stderr of the client players. The stderr of the manager and the referee will not be read 
by the caiaio.

Command: Expected immediate response:

I lock
lock_ok
This response, sent by the caiaio, must be read 
before continuing.

I unlock No response!

11 In C this is done with the functions scanf and printf; in Pascal with the functions ReadLn and WriteLn. In order having the games 
executed fast by the caiaio, the printed information has to be flushed. In C this is done with fflush(stdout), in Pascal with 
Flush(Output) and in Java with System.out.flush().

12 In C you can do this with fprintf(stderr, <format string>, <variables>) followed by fflush(stderr); in Pascal with WriteLn(StdErr, 
<information>) followed by Flush(StdErr); in Java you can flush with System.err.flush().



The protocol from the point of view of the manager

Command: Lock? Expected immediate response:

I cpu_speed <gamepc> [<mypc>]
Informs the caiaio about the cpu speed of the 
competition computer and the cpu speed of your 
computer (it will be estimated if omitted).
If the command is omitted the caiaio assumes 
the speed of both computers are the same.
Example: I cpu_speed 2800 [2200]

No response!

I number_players <number>
Informs the caiaio about the number of client 
players. The command is compulsory.
Example: I number_players 2

No response!

I player <number> <name> 
<time> [<log>]
Informs the caiaio about the executable name of 
a client player, its maximum competition playing 
time in milliseconds and the name of the log file 
where the stderr of the client player must be 
written to (if omitted, the stderr will only be 
printed to the screen in the debug mode). The 
command is compulsory for all players.
Example: I player 1 player1 30000 [log1.txt]

No response!

I start <number> [<err_time>]
Starts the client player. If the firsterror of a 
player is wanted, the waiting time in 
milliseconds must be included. The command is 
compulsory, the option is not.
Example: I start 1 [1000]

If the option is included, you can expect 
one of the two possibilities:
no_firsterror
firsterror <id_player>
Example: firsterror player1

I referee <name> [<log>]
Starts the referee of which the executable name 
must be given. A string (i.e. the name of a log 
file) must be included if you want to inform the 
referee about it. The string is included as the 
first argument when the referee is executed.
Example: I referee referee [reflog.txt]

No! <report_from_referee>
Example: report player1 – player2: 12 – 0

I kill <number>
Stops a player. This command may be omitted if 
you are sure the client player stops itself.
Example: I kill 1

No response!

I kill_referee
Stops the referee. This command may be 
omitted if you are sure the referee stops itself.
Example: I kill_referee

No response!

I stop_caiaio
Stops the Caiaio. The caiaio makes sure the 
manager is stopped first. The command is 
compulsory.
Example: I stop_caiaio

No response!



The protocol from the point of view of the referee

Command: Lock? Expected immediate response:
<number> <message>
Sends a message to one of the client 
players. It is preferred to lock the referee to 
the caiaio first. Only the message will be sent 
to the player. This command must be 
followed immediately by a listen command if 
an answer is expected.
Example: 1 Start

Prefer. No primarily response!

I listen <number>
Makes the caiaio listen to a client player 
exclusively. After having communicated with 
one of the client players, it is wise to unlock 
the referee temporarily from the Caiaio.
Example: I listen 1

Prefer.

You can expected one of the five possibilities:
<answer_from_player>
Example: d4-d5
<caiaio:_player_stopped>
<caiaio:_player_crashed_%s>
Remark: %s is replaced by the type of crash
<caiaio:_player_timeout>
<caiaio:_player_sends_”\n”>

I request_time <number>
Requests the playing time of a client player.
Example: I request_time 1

time <actual> <estimate>
The first time is the actual playing time in 
milliseconds and the second is an estimate 
for the case the game should have been 
played on the competition computer.
Example: time 15678 12318

M <report>
Sends a message to the manager. The 
command is compulsory. Only the message 
will be sent to the manager. After sending the 
message to the manager the referee must 
stop itself.
Example: M report player1 – player2: 12 – 0

No! No response!

Remark: the first three commands may be used by the manager as well. This makes it in 
theory possible not to use the referee.

Time measurements
The caiaio makes use of the internal clock of the computer to measure the playing time of 
the client players. If using the C function gettimeofday13 the actual relative time is 
returned in microseconds accurate. The difference in playing time measured by the caiaio 
and the client player is better than 2 % of the maximum playing time for games that run 
longer than 10 seconds. For programs that run shorter than 5 seconds inaccuracies are 
reported of approximately 1 second shorter in running time. The reason for this is that 
during the measurement of one move the caiaio misses for a non-known reason 
approximately 5 milliseconds.

13 The same counts for the use of the function GetTime in Pascal.



Using Java class files with Caia14

With a little effort you can easily use Java class files in Caia competitions. We have written 
the javawrapper for that. You can find the source of javawrapper.c in the folder 
caia_install_<namegame>/javawrapper/. In the Windows distribution you can find them in 
de src/ folder.

Suppose the name of your class file is JavaPlayer.class. The only thing you will have to do 
is to rename the executable in the bin/ folder from javawrapper to JavaPlayer.

In manager.txt you can use the program name JavaPlayer which refers to the executable 
that starts your Java player.

Using your own executable Java jar with Caia
You can also use your own Java jar in Caia competitions. We have written the jarwrapper 
for that. The source of jarwrapper.c is put in the caia_install_<namegame>/jarwrapper/ folder. 
In the Windows distro this is put into the src/ folder.

Suppose the name of your class file is JavaPlayer.class. The only thing you will have to do 
is to rename the executable in the bin/ folder from jarwrapper to JavaPlayer. The executable 
now will perform the command: java -jar JavaPlayer. The jar file should contain a 
manifest which points to the class with the main method15.

In manager.txt you can use the program name JavaPlayer which refers to the executable 
that starts your Java jar player.

14 In October 2007 a solution on the CodeCup forum is published on how to run two Java players against each other. Have a look in 
the thread “Duplicate class files” in the forum “Technical questions”.

15 For more information: http://java.sun.com/docs/books/tutorial/deployment/jar/appman.html

http://java.sun.com/docs/books/tutorial/deployment/jar/appman.html
http://java.sun.com/docs/books/tutorial/deployment/jar/appman.html

